

Tetrahedron Letters 43 (2002) 3661-3663

TETRAHEDRON LETTERS

Stereoselective synthesis of isoquinoline derivatives from bicyclic lactam templates

Steven M. Allin,^{a,*} Darshan G. Vaidya,^a Stella L. James,^a James E. Allard,^a Timothy A. D. Smith,^a Vickie McKee^a and William P. Martin^b

^aDepartment of Chemistry, Loughborough University, Loughborough, Leicester LE11 3TU, UK ^bSynthetic Chemistry, GlaxoSmithKline Pharmaceuticals, Harlow, Essex CM19 5AW, UK

Received 8 February 2002; revised 19 March 2002; accepted 28 March 2002

Abstract—We report a novel, facile and stereoselective approach to a tricyclic tetrahydroisoquinoline ring system from readily available, non-racemic, bicyclic lactam substrates. © 2002 Elsevier Science Ltd. All rights reserved.

Derivatives of the isoquinoline ring system are found as major structural motifs in a wide range of natural products and biologically active compounds and therefore new synthetic routes to these targets are of general interest.¹ Based on our novel stereoselective approach to the isoindoloisoquinoline² and pyrroloisoquinoline³ ring systems, we recognized that a suitably substituted bicyclic lactam could act as a precursor in a stereoselective approach towards a tricyclic tetrahydroisoquinoline ring, which can be seen as a sub-unit (BCD rings) of the protoberberine alkaloids exemplified by xylopinine **1** and its derivatives.⁴ Our approach allows the introduction of asymmetry during the key ring-forming step: the stereoselective cyclization of a bicyclic lactam substrate via an *N*-acyliminium intermediate.

Although bicyclic lactams derived from β -aminoalcohols containing fused 5,5- (2, n=0, Meyers)⁵ and 5,6-

Scheme 1.

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00628-7

^{*} Corresponding author. E-mail: s.m.allin@lboro.ac.uk

ring systems (2, n=1, Amat and Bosch)⁶ have been widely utilized in asymmetric synthesis, to the best of our knowledge the present application of the corresponding fused 5,6-system (n=1) as a precursor in an *N*-acyliminium mediated cyclization reaction leading to tetrahydroisoquinoline targets represents a novel application of this chiral template.

Our synthesis of the required bicyclic lactam substrate **3** from commercially available (S)-phenylalaninol followed the general method previously described by Amat.⁶ Heating (S)-phenylalaninol with methyl 5-oxopentanoate in toluene at reflux under Dean–Stark conditions gave a 4:1 mixture of separable diastereoisomers, **3a** and **3b**, respectively, in 50% overall yield (Scheme 1). The structure of the major diastereoisomer *cis*-**3a** was confirmed by NOE studies,⁷ and is consistent with the results reported by Amat for the corresponding phenylglycinol-derived lactam diastereoisomers.⁶

With **3a** in hand we turned our attention to the proposed *N*-acyliminium cyclization reaction. On treating lactam **3a** with TiCl₄ as Lewis acid activator at -10° C in dichloromethane for 20 h, we were pleased to isolate the cyclized product in 65% yield (Scheme 1). ¹H NMR analysis of the crude product mixture revealed the formation of only one diastereoisomer, **4**. An NOE study indicated that the relative stereochemistry of the single product diastereoisomer **4** was as indicated in Scheme 1, with the protons at the 6 and 10b positions having a *trans*-relationship.⁸

All other Lewis acids that were employed as activators failed to induce cyclization $(BF_3 \cdot OEt_2, TMSOTf, SnCl_4)$, leading only to complete equilibration from *cis*-**3a** to *trans*-lactam **3b**. This result is in accordance with the report of Amat, in which TFA was used to effect the same equilibration reaction.⁶

On treating *trans*-diastereoisomer **3b** with TiCl₄ as described above we were able to isolate 34% of the desired cyclization product **4**. Interestingly both **3a** and **3b** lead to the *same* diastereoisomer of the cyclization product **4**. This result supports the mechanism previously proposed by us for this type of cyclization,³ since both **3a** and **3b** would yield the same *N*-acyliminium ion intermediate on activation.

Higher yields of both the corresponding bicyclic lactam precursor and the cyclization product were obtained with a methoxy-substituted substrate (Scheme 2). In this case the bicyclic lactam 5 was isolated in 94% yield as a 6:1 mixture of diastereoisomers. Based on the results described above for cyclization of separated diastereoisomers 3a and 3b, we chose not to separate the diastereoisomers of 5 prior to cyclization. Treating 5 with TiCl₄ under our usual conditions gave a 68% yield of the tetrahydroisoquinoline 6 as a single diastereoisomer.

The stereochemical outcome of these cyclizations are in accord with our previously proposed models.³

We were able to obtain further confirmation of the stereochemical outcome of these cyclizations by X-ray crystallography on compound 6.⁹ As shown in Fig. 1 this product, formed as a single diastereoisomer, has protons at positions C5 and C15 in a *trans* relationship, as had been indicated by the NOE on the simpler compound 4.

In summary, we report a facile and highly stereoselective approach to the tricyclic tetrahydroisoquinoline ring system representing the BCD sub-unit of the protoberberine alkaloids, from readily available nonracemic bicyclic lactam substrates. Previous work from our group in the pyrroloisoquinoline series³ has demonstrated the removal of the hydroxymethyl auxiliary group from similar products of cyclization through a three-step procedure. Current work is focused on extending this methodology to protoberberine targets, and our progress will be reported in due course.

Scheme 2.

Figure 1.

Acknowledgements

Loughborough and Huddersfield Universities (joint studentship to D.G.V.), Loughborough University and GlaxoSmithKline (joint studentship to S.L.J.), EPSRC (Quota studentship to J.E.A.).

References

- 1. Bentley, K. Nat. Prod. Rep. 2000, 17, 247-268.
- Allin, S. M.; Northfield, C. J.; Page, M. I.; Slawin, A. M. Z. Tetrahedron Lett. 1998, 39, 4905–4908.
- (a) Allin, S. M.; James, S. L.; Martin, W. P.; Smith, T. A. D. *Tetrahedron Lett.* **2001**, *41*, 3943–3946; (b) Allin, S. M.; James, S. L.; Martin, W. P.; Smith, T. A. D.; Elsegood, M. R. J. J. Chem. Soc., Perkin Trans. 1 **2001**, 3029–3036.
- (a) Comins, D. L.; Thakker, P. M.; Baevsky, M. F.; Badawi, M. M. *Tetrahedron* 1997, *53*, 16327–16340; (b) Czarnocki, Z. J. Chem. Res. (S) 1992, 334–335; (c) Kametani, T.; Takagi, N.; Toyota, M.; Honda, T.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1981, 2830–2834.
- (a) Groaning, M. D.; Meyers, A. I. *Tetrahedron* 2000, *56*, 9843–9873; (b) Meyers, A. I.; Brengel, G. P. *Chem. Commun.* 1997, 1–8.

- (a) Amat, M.; Bosch, J.; Hidalgo, J.; Canto, M.; Perez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074–3084; (b) Amat, M.; Llor, N.; Bosch, J. Tetrahedron Lett. 1994, 35, 2223–2226; (c) Amat, M.; Llor, N.; Bosch, J.; Solans, X. Tetrahedron 1997, 53, 719–730.
- 7. *cis*-**3a**: Although no NOE was observed directly between protons H3 and H5, the stereochemistry was determined to be *cis* since each gave a positive NOE to the same proton at C2 (3.5% for H5, 3.4% for H3).
- 8. The absence of an NOE between protons situated at the 6 and 10b positions of product 4 is consistent with the expected structure and with previous reports from our group for related compounds.³ Since the cyclization of substrate 3a gave exclusively one product diastereoisomer, a comparative NOE could not be carried out on the minor diastereoisomer.
- 9. CCDC reference number 17860.